\(\int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\) [55]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 52 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\text {arctanh}(\sin (e+f x)) \cos (e+f x)}{a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

arctanh(sin(f*x+e))*cos(f*x+e)/a/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {2920, 2820, 3855} \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\cos (e+f x) \text {arctanh}(\sin (e+f x))}{a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(a*c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2820

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{a c} \\ & = \frac {\cos (e+f x) \int \sec (e+f x) \, dx}{a c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {\text {arctanh}(\sin (e+f x)) \cos (e+f x)}{a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.33 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.98 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\cos ^3(e+f x) \left (\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )}{c f (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(Cos[e + f*x]^3*(Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]))/(c*f*(-
1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.54

method result size
default \(-\frac {\cos \left (f x +e \right ) \left (\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )-\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )\right )}{a c f \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(80\)

[In]

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/a/c/f*cos(f*x+e)*(ln(csc(f*x+e)-cot(f*x+e)-1)-ln(-cot(f*x+e)+csc(f*x+e)+1))/(-c*(sin(f*x+e)-1))^(1/2)/(a*(1
+sin(f*x+e)))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 160, normalized size of antiderivative = 3.08 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\left [\frac {\sqrt {a c} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right )}{2 \, a^{2} c^{2} f}, -\frac {\sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{a^{2} c^{2} f}\right ] \]

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(a*c)*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*si
n(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3)/(a^2*c^2*f), -sqrt(-a*c)*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) +
 a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)*sin(f*x + e)))/(a^2*c^2*f)]

Sympy [F]

\[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {\cos ^{2}{\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(f*x+e)**2/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Integral(cos(e + f*x)**2/((a*(sin(e + f*x) + 1))**(3/2)*(-c*(sin(e + f*x) - 1))**(3/2)), x)

Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)), x)